Analytics Educator
  • Home
  • Courses
  • Blog
  • FAQ
  • Contact Us
  • Home
  • Courses
  • FAQ
  • Contact
Home   /   Blog   /   Details

Price Prediction of Used Cars using Machine Learning Algorithms¶

Different fields of science, economics, engineering, and marketing accumulate and store data primarily in electronic databases. Appropriate and well-established decisions should be made using the data collected. It is practically impossible to make sense of datasets containing more than a handful of data points without the help of computer programs. To be certain of the insights that the collected data provides and to make further decisions, data mining is performed where we go through distinctive analysis processes.

Exploratory data analysis is key, and usually the first exercise in data mining. It allows us to visualize data to understand it as well as to create hypotheses for further analysis. The exploratory analysis centers around creating a synopsis of data or insights for the next steps in a data mining project.

EDA in data science actually reveals ground truth about the content without making any underlying assumptions. This is the fact that data scientists use this process to actually understand what type of modeling and hypotheses can be created. Key components of exploratory data analysis include summarizing data, statistical analysis, and visualization of data. Python provides expert tools for exploratory analysis, with pandas for summarizing; scipy, along with others, for statistical analysis; and matplotlib and plotly for visualizations.

In this Free case study, Analytics Educator will show you how to use Machine Learning algorithm to predict the price of used cars (2nd hand cars) accurately. We will emphasize more on the EDA with Python part in this project and use only a single Machine learning algorithm to predict and determine the accuracy.

Craigslist is the world's largest collection of used vehicles for sale, this dataset which includes every used vehicle entry within the United States on Craigslist. We are going to predict the price of 2nd hand cars, so that the seller gets the maximum possible price.

Importing Libraries¶

In [79]:
import numpy as np 
                import pandas as pd
                import seaborn as sns
                import matplotlib.pyplot as plt
                sns.set()
                import os
                #setting the path
                os.chdir("C:\\Users\\ASUS\\Desktop")
                

Reading Data¶

In [2]:
data=pd.read_csv("vehicles.csv")
                
In [3]:
# create a back up copy
                df = data.copy()
                
In [5]:
pd.set_option('display.max_columns', None)
                df.head()
                
Out[5]:
id url region region_url price year manufacturer model condition cylinders fuel odometer title_status transmission vin drive size type paint_color image_url description county state lat long
0 7184791621 https://duluth.craigslist.org/ctd/d/duluth-200... duluth / superior https://duluth.craigslist.org 6995 2000.0 gmc new sierra 1500 excellent 8 cylinders gas 167783.0 clean automatic 1GTEK19T3YE366021 4wd NaN NaN red https://images.craigslist.org/00n0n_f06ykBMcdh... 2000 *** GMC New Sierra 1500 Ext Cab 157.5 WB... NaN mn 46.8433 -92.2550
1 7184773187 https://duluth.craigslist.org/cto/d/saginaw-20... duluth / superior https://duluth.craigslist.org 8750 2013.0 hyundai sonata excellent 4 cylinders gas 90821.0 clean automatic NaN fwd NaN NaN grey https://images.craigslist.org/00d0d_kgZ6xoeRw2... For Sale: 2013 Hyundai Sonata GLS - $8750. O... NaN mn 46.9074 -92.4638
2 7193375964 https://newhaven.craigslist.org/cto/d/stratfor... new haven https://newhaven.craigslist.org 10900 2013.0 toyota prius good 4 cylinders hybrid 92800.0 clean automatic NaN fwd NaN NaN blue https://images.craigslist.org/00d0d_3sHGxPbY2O... 2013 Prius V Model Two. One owner—must sell my... NaN ct 41.1770 -73.1336
3 7195108810 https://albuquerque.craigslist.org/cto/d/albuq... albuquerque https://albuquerque.craigslist.org 12500 2003.0 mitsubishi lancer good 4 cylinders gas NaN clean manual NaN 4wd mid-size sedan grey https://images.craigslist.org/00m0m_4a8Pb6JbMG... 2003 Mitsubishi Lancer Evolution, silver. Abo... NaN nm 35.1868 -106.6650
4 7184712241 https://duluth.craigslist.org/ctd/d/rush-city-... duluth / superior https://duluth.craigslist.org 16995 2007.0 gmc sierra classic 2500hd good 8 cylinders diesel 254217.0 clean automatic 1GTHK23D57F102022 4wd full-size truck white https://images.craigslist.org/01414_g093aPtSMW... **Bad Credit, No Credit... No Problem!**2007 G... NaN mn 45.6836 -92.9648

Obs: In this data price is the dependent variable and rest are the independent variable. However, we can see that there are lots of unimportant variables like url, region_url etc. We will remove the redundant variables from our dataset¶

In [164]:
df.info()
                
<class 'pandas.core.frame.DataFrame'>
                RangeIndex: 539759 entries, 0 to 539758
                Data columns (total 25 columns):
                 #   Column        Non-Null Count   Dtype  
                ---  ------        --------------   -----  
                 0   id            539759 non-null  int64  
                 1   url           539759 non-null  object 
                 2   region        539759 non-null  object 
                 3   region_url    539759 non-null  object 
                 4   price         539759 non-null  int64  
                 5   year          538772 non-null  float64
                 6   manufacturer  516175 non-null  object 
                 7   model         531746 non-null  object 
                 8   condition     303707 non-null  object 
                 9   cylinders     321264 non-null  object 
                 10  fuel          536366 non-null  object 
                 11  odometer      440783 non-null  float64
                 12  title_status  536819 non-null  object 
                 13  transmission  535786 non-null  object 
                 14  vin           315349 non-null  object 
                 15  drive         383987 non-null  object 
                 16  size          168550 non-null  object 
                 17  type          392290 non-null  object 
                 18  paint_color   365520 non-null  object 
                 19  image_url     539740 non-null  object 
                 20  description   539738 non-null  object 
                 21  county        0 non-null       float64
                 22  state         539759 non-null  object 
                 23  lat           530785 non-null  float64
                 24  long          530785 non-null  float64
                dtypes: float64(5), int64(2), object(18)
                memory usage: 103.0+ MB
                

Data cleaning¶

We are showing the frequency distribution of all variables to determine the unimportant variables¶

In [6]:
r=df.columns
                for i in r:
                    print(df[i].value_counts())
                
7194886517    1
                7189000001    1
                7183550244    1
                7196139303    1
                7192970529    1
                             ..
                7190568893    1
                7191969294    1
                7195637696    1
                7190396865    1
                7190089730    1
                Name: id, Length: 423857, dtype: int64
                https://orangecounty.craigslist.org/ctd/d/santa-ana-2011-mini-countryman-cooper/7194000283.html      1
                https://baltimore.craigslist.org/ctd/d/lutherville-timonium-2011-chevrolet/7188930949.html           1
                https://washingtondc.craigslist.org/mld/cto/d/silver-spring-toyota-corolla-2006/7193998974.html      1
                https://honolulu.craigslist.org/oah/ctd/d/waipahu-auto-deals2011-chevrolet-camaro/7196201050.html    1
                https://fortmyers.craigslist.org/lee/ctd/d/vero-beach-2011-ford-f250-super-duty/7188503273.html      1
                                                                                                                    ..
                https://hartford.craigslist.org/ctd/d/westport-2007-avalanche-lt-package-4wd/7196084213.html         1
                https://baltimore.craigslist.org/cto/d/baltimore-2010-ford-escape-limited/7184749194.html            1
                https://masoncity.craigslist.org/ctd/d/faribault-2014-ford-edge-se-awd-4dr/7190678802.html           1
                https://westslope.craigslist.org/ctd/d/evans-2013-ford-150-f-wd-reg-cab-126/7195780250.html          1
                https://medford.craigslist.org/ctd/d/portland-2014-chevrolet-suburban-lt-x4/7192045084.html          1
                Name: url, Length: 423857, dtype: int64
                columbus               3296
                springfield            3294
                jacksonville           3284
                rochester              3087
                salem                  2985
                                       ... 
                meridian                 22
                kansas city              15
                west virginia (old)      14
                st louis                  5
                fort smith, AR            1
                Name: region, Length: 404, dtype: int64
                https://salem.craigslist.org         2985
                https://kpr.craigslist.org           2983
                https://fresno.craigslist.org        2983
                https://stlouis.craigslist.org       2978
                https://cosprings.craigslist.org     2977
                                                     ... 
                https://kirksville.craigslist.org      37
                https://nesd.craigslist.org            30
                https://swks.craigslist.org            29
                https://meridian.craigslist.org        22
                https://wv.craigslist.org              14
                Name: region_url, Length: 413, dtype: int64
                0        35025
                3500      3865
                8995      3589
                7995      3537
                4500      3465
                         ...  
                28766        1
                30815        1
                20120        1
                10581        1
                40812        1
                Name: price, Length: 16305, dtype: int64
                2017.0    30828
                2015.0    21901
                2014.0    21773
                2013.0    21480
                2016.0    21430
                          ...  
                1917.0        1
                1915.0        1
                1913.0        1
                1912.0        1
                1911.0        1
                Name: year, Length: 111, dtype: int64
                ford               59786
                chevrolet          46603
                toyota             26001
                honda              18898
                nissan             17536
                jeep               14224
                gmc                12782
                dodge              12547
                ram                11917
                hyundai             8765
                subaru              7971
                bmw                 7717
                volkswagen          7121
                kia                 7069
                mercedes-benz       6859
                chrysler            5903
                buick               4668
                cadillac            4615
                mazda               3964
                lexus               3916
                audi                3334
                acura               2784
                lincoln             2593
                pontiac             2323
                infiniti            2318
                volvo               2097
                mitsubishi          1945
                mercury             1330
                mini                1320
                rover               1151
                saturn              1083
                jaguar               787
                fiat                 567
                tesla                299
                alfa-romeo           138
                harley-davidson      125
                datsun                69
                ferrari               64
                aston-martin          28
                land rover            15
                porche                 6
                morgan                 3
                hennessey              1
                Name: manufacturer, dtype: int64
                f-150                          6073
                silverado 1500                 3878
                escape                         3208
                camry                          2906
                1500                           2898
                                               ... 
                tundra sr5 truck                  1
                compass sport 4x4 low miles       1
                f650 super duty regular ca        1
                Vandolkswagon Jett57800           1
                New Beetle                        1
                Name: model, Length: 27042, dtype: int64
                excellent    85254
                good         65262
                like new     17880
                fair          6724
                new           1069
                salvage        530
                Name: condition, dtype: int64
                6 cylinders     70130
                4 cylinders     69542
                8 cylinders     54091
                5 cylinders      1594
                10 cylinders      884
                other             851
                3 cylinders       406
                12 cylinders      181
                Name: cylinders, dtype: int64
                gas         286775
                diesel       24414
                other        11311
                hybrid        3737
                electric       977
                Name: fuel, dtype: int64
                0.0         1799
                150000.0     694
                130000.0     671
                140000.0     667
                160000.0     645
                            ... 
                17925.0        1
                194413.0       1
                48603.0        1
                25107.0        1
                47171.0        1
                Name: odometer, Length: 89554, dtype: int64
                clean         315607
                rebuilt         6017
                salvage         3248
                lien            1963
                missing          711
                parts only       213
                Name: title_status, dtype: int64
                automatic    292619
                manual        23647
                other         11799
                Name: transmission, dtype: int64
                1HTMRAAM19J040080    133
                1FVDBSDC34HM88268    125
                1FVDCXBS48HZ75358    118
                77777777777777777     70
                2NKHHJ7X2HM136714     60
                                    ... 
                3FADP4TJ5DM149893      1
                2T2BK1BA3FC297838      1
                1FMCU9GD8JUC87396      1
                1FAHP2E84GG134039      1
                1FTNF1CF7EKD17926      1
                Name: vin, Length: 103588, dtype: int64
                4wd    99347
                fwd    89632
                rwd    42140
                Name: drive, dtype: int64
                full-size      52820
                mid-size       30772
                compact        16371
                sub-compact     2664
                Name: size, dtype: int64
                sedan          64842
                SUV            62106
                truck          26967
                pickup         24276
                coupe          12931
                other          12866
                hatchback       9574
                wagon           8332
                van             7287
                convertible     5854
                mini-van        5213
                offroad          530
                bus              379
                Name: type, dtype: int64
                white     57646
                black     43843
                silver    32687
                blue      22988
                red       22395
                grey      21752
                custom     6299
                green      5983
                brown      4618
                yellow     1775
                orange     1502
                purple      715
                Name: paint_color, dtype: int64
                https://images.craigslist.org/00H0H_lwWjXSEWNa7_0x20oM_600x450.jpg    2106
                https://images.craigslist.org/00l0l_fl36gaeOcIT_0cU09G_600x450.jpg     133
                https://images.craigslist.org/00a0a_2RYSGJJExad_0bM08P_600x450.jpg     125
                https://images.craigslist.org/00202_l590CdXzJSo_001001_600x450.jpg     122
                https://images.craigslist.org/01010_d7IBA4PgcmC_09e05H_600x450.jpg     115
                                                                                      ... 
                https://images.craigslist.org/00k0k_adpaDg8st1T_0x20oM_600x450.jpg       1
                https://images.craigslist.org/00C0C_4mpMrhwWWPp_0kE0fu_600x450.jpg       1
                https://images.craigslist.org/00909_fdlnr1QHlhn_0ak07K_600x450.jpg       1
                https://images.craigslist.org/01212_eB1nL5MODmY_09Q07v_600x450.jpg       1
                https://images.craigslist.org/00w0w_78zjb9qds2U_0cU09G_600x450.jpg       1
                Name: image_url, Length: 222413, dtype: int64
                VISIT OUR WEBSITE WWW.DIRECTDETAILOFOH.COM HTTPS://DIRECTDETAILOHIO.COM/  WE HAVE A SELECTION OF CARS,TRUCKS,SUV'S. GUARANTEED APPROVAL. BUY HERE PAY HERE. NO CREDIT CHECKS! NO INCOME VERIFICATION!  Vehicle is AS-IS NO Warranty. Information deemed reliable, but not guaranteed. Interested parties should confirm all data before relying on it to make a purchase decision. All prices and specifications are subject to change without notice. Prices may not include additional fees such as government fees and taxes, title and registration fees, finance charges, dealer document preparation fees, processing fees, and emission testing and compliance charges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        144
                Frontier Auto Sales wants you to know we're about more than just selling cars our mission is to build long-lasting relationships. We want to grow our Frontier Family and see you send us your family and friends. We accept trades! (tow it, drive it or push it in.) We purchase vehicles on the spot. We even cosign vehicles if you need to sell yours let us do the work for you. Let us help find the perfect financing for you and your family’s needs. Spend 3 minutes to fill out a hassle-free secure application with Frontier Auto Sales and let us work hard to get you the better APR & Terms you deserve.   Don’t forget Frontier Auto Sales has Alaska’s Best referral reward $300 for every individual you send that completes a purchase from Frontier Auto Sales.    Disclaimer: All vehicles subject to prior sale. We reserve the right to make changes without notice and are not responsible for errors or omissions. All prices exclude dealer service fees and DMV fees, any finance charges.   **Warranties may be available on all models for an additional cost**  For more information on this and other vehicles please see our website: www.frontierautosales.org Frontier Auto Sales  Frontier Auto Sales 1300 E. Dowling Rd. Anchorage, AK 99518 Call: 907-561-9900 Text: 907-717-7457 Like us on Facebook!  Store Hours: Monday - Friday 9 AM - 8 PM Saturday 10 AM - 7 PM Sunday CLOSED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            140
                HEC Leasing Call Russ or Gary at 888-366-1571  Reduced Down Payments! Factory Warranty Included With Each Truck!  Detroit DD13 450HP Engine Fuller 10-Speed Ultrashift Plus Automatic Trans. 342 RAR 240" WB Air Slide 5th Wheel w/In Cab Release Dual 100 Gallon Fuel Tanks 22.5 LP Tires 6 Pol,  Aluminum Wheels 72" Double Bunk Sleeper w/ Premium Interior Freightliner Parksmart Batt HVAC System Auxiliary Heater in Sleepers Dual High Back Air Ride Seats AUTOMATIC TRANSMISSIONS!!!  We make financing decisions IN HOUSE! Low weekly rates! We make equipment acquisition easy & affordable.  We offer flexible financing, and it is our mission to provide you with a transportation solution that meets your hauling needs and fits within your budget.  Our lease to own arrangements are designed to making acquiring a truck as painless as possible. We are a small, family-oriented company that provides the personalized service you need to ensure you are acquiring the right truck under the right terms. Leasing is a great way to get your small business off the ground or quickly add capacity to your current operations. To learn more about our truck leasing and financing services, contact us today.  Call one of our VP of Sales - Gary Carrigan, Russ Carrigan  at 888-366-1571!              Peterbilt, Kenworth, Freightliner, Western Star, International,  Crew Cab, Mack,Freightliner, Kenworth, Peterbilt, Owner, Operator, Over the Road, Trucking, Drivers, Semi, Truck, International, Day Cab, Cascadia, Courrier, Over The Road, Leasing Semi, Volvo, Commercial, Used Trucks,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            99
                Pennington Ford, and our sister store, right across the street, Pennington Chevrolet Buick, have been working hard to provide you with a Premier selection of used cars and trucks. We are dedicated to you, our customer. Front to back, we will be here for everything. From helping you search to find the car or truck of your dreams, to delivery. Making your Car shopping experience easier is what we do! Be sure to check out the rest of our inventory, and call with any questions. 618-783-2385. As always here at The Pennington Auto Group, we have financing available and all trades are welcomed. Stop by Newton Illinois, Premier Car Dealership or give us a call, we look forward to doing business with you!!!  Pennington Ford & Polaris  806 S Van Buren Newton, IL 62448  618-783-2385  OVER 200+ NEW/USED VEHICLES IN STOCK!!  CHECK OUT OUR INVENTORY  WWW.PENNINGTONFORD.COM WWW.PENNINGTONCHEVROLETBUICK.COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               79
                www.TEXASDIESELSTORE.com  CALL OR TEXT 254-247-2172  2016 GMC SIERRA 2500HD SLT - 4X4  6.6L DURAMAX TURBO DIESEL   ALLISON AUTOMATIC TRANSMISSION  4 WHEEL DRIVE - z71  158K MILES  LEATHER - LOADED!  HEATED AND COOLED SEATS  TOW HITCH  FACTORY NAVIGATION   18" FUEL WHEELS  295/70R18 COOPER TIRES   FIXED CENTER CONSOLE   SLT PACKAGE W/ LEATHER, BACK UP CAMERA, NAVIGATION & MORE  100% RUST FREE   TRADE INS? YES, WE TAKE THEM! CONTACT US WITH YOUR VEHICLE INFO FOR A FREE APPRAISAL!  FREE SHIPPING IN THE STATE OF TEXAS!!! WE ALSO OFFER PICK UP FROM THE AUSTIN AIRPORT! FLY IN & DRIVE HOME WITH UP TO A $500 REIMBURSEMENT IN AIRFARE!  WE SPECIALIZE IN HARD TO FIND DIESELS! CHECK OUT OUR WEBSITE! OUR INVENTORY IS CONSTANTLY CHANGING WITH NEW ARRIVALS DAILY!  CALL OR TEXT 254-247-2172  You are looking at an All Terrain HD edition 2016 GMC SIERRA 2500HD crew cab SLT pick up with the popular 6.6L Duramax turbo diesel engine and Allison automatic transmission! This truck is BEAUTIFUL and super clean!  The truck is all stock!  Never been hitched! Non smoker truck! The interior looks GREAT as well with leather seats and fixed console with touch screen navigation on the dash! This truck is hard loaded with all important factory options including heated seats, navigation also is smoke free! Does have a few hail dings on the hood. Overall very clean truck!  Dual climate control and heated seats for everybody to be comfortable! 100% free of rust! Recently serviced and ready for a new owner!  Call or text us today for walk-around videos or pictures!  Texas Diesel Store is a NATIONWIDE dealer! We service anyone, anywhere, anytime! We offer shipping options, we can also pick you up from the airport and bring you directly to the dealership! Call or Txt us for a shipping quote!!  We also offer extremely competitive Financing options! There is a free credit application on our website. We work hard to have the best financing options available with the most competitive rates. Click the link to fill out a Credit Application: http://texasdieselstore.com/financing  Contact Us Today @ 254-247-2172  Shipping and reimbursements are subject to the completion of the transaction at our designated list price. Airfare reimbursements will be refunded at the completion of the deal as long as an airfare receipt is provided for our records.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   67
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ... 
                2006 Chrysler Sebring GTC Convertible     Offered by: Affordable Auto Sales Albuquerque — (505) 431-4233  — $5,995     Power Steering,Power Brakes,Power Door Locks,Power Windows,Power Drivers Seat,Radial Tires,Gauge Cluster,Trip Odometer,Tachometer,Air Conditioning,Tilt Steering Wheel,Cruise Control,Tinted Glass,Driver Side Air Bag,Front Bucket Seats,Reclining Seats,Compact Disc Player,Anti-Lock Braking System,Alloy Wheels,Rear Spoiler,Clock,Interval Wipers,Rear Defroster,Remote Trunk Lid,Console,Carpeting,Vanity Mirror,Day/Night Lever,Dual Sport Mirrors,Driver Side Remote Mirror,Velour Upholstery,Accent Stripes,Body Side Moldings,Center Arm Rest,Map Lights,Inside Hood Release,Fold Down Rear Seat,Maintenance Free Battery,Halogen Headlights,Airbags - Front - Dual,Air Conditioning - Front,Emergency Interior Trunk Release,Reading Lights Front,Child Seat Anchors,Cruise Control,Multi-function Remote Trunk Release,Multi-function Remote Keyless Entry,Front Power Outlet,Center Console Front Console With Storage,Driver Seat Power Adjustments,Exterior Entry Lights,Warnings And Reminders Low Fuel Level,Headlights Auto Delay Off,Power Door Locks,Exterior Mirrors Power,Front Suspension Type: Double Wishbones,Front Suspension Classification: Independent,Convertible Roof Soft Top,Seats Vinyl Upholstery,Seatbelts Seatbelt Pretensioners,Rear Seats Bench,Tachometer,Convertible Rear Window Glass,Convertible Roof Power,Rear Spoiler,Seats Front Seat Type: Bucket,Front Headrests Adjustable,Windows Front Wipers: Intermittent,Power Windows,Suspension Stabilizer Bar(s): Front,Suspension Stabilizer Bar(s): Rear,Windows Rear Defogger,AM/FM STEREO RADIO,PASSENGER SIDE AIR BAG   Affordable Auto Sales Albuquerque    Year: 2006 Make: Chrysler Model: Sebring Series: GTC Convertible  VIN: 1C3EL75R16N153709  Stock #: 153709 Condition: Used Mileage: 157,901  MPG: 21 city / 28 highway  Exterior: Green  Interior: Dark Slate Gray  Body: Convertible  Transmission: Automatic  Engine: 6 Cylinder     ⚡⚡️⚡⚡️⚡️⚡️⚡️⚡️⚡️⚡⚡️⚡️  CALL/TEXT (505) 431-4233⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡⚡️  🚗 🚕 🚙 🚌 🚎 🏎  - AFFORDABLE AUTO SALES - QUALITY RELIABLE CARS - 🚒 🚐 🚚 🚛 🚜 🏍  ✅ DRIVE AWAY TODAY AT A GREAT CASH PRICE!!!!!  ☮️ EASY FINANCING FOR ALL CREDIT SITUATIONS - APPROVED!  ☮️ WE EVEN OFFER BUY HERE PAY HERE - WITH APPROVED DOWN PAYMENT!  💥💥💥 FOR FAST PRE-APPROVALS GO TO: 💥💥💥   https://ssl-wwwaffordableautosalesnmcom.dcs-cms.com/creditapp.aspx  ☮️ TRADE-INS WELCOME, WE BUY USED CARS!  ☮️ VEHICLE HISTORY REPORTS!! CARFAX!  ☎️ SE HABLA ESPAÑOL! MAL CREDITO, SIN CREDITO -- NO PROBLEMAS! LLAME O TEXTO (702) 503-2373  ↪️  FOR MORE ADS BY THIS DEALER GO TO: https://albuquerque.craigslist.org/search/ctd?query=affordable+auto+sales   More vehicle details: affordable-auto-sales-albuquerque.hammerwebsites.net/v/qTRRfScX  Address: 4525 Lomas Blvd NE Albuquerque, NM 87110 Phone: (505) 431-4233  Website: www.affordableautosalesnm.com      📲 ☎️ Call or text (505) 431-4233 for quick answers to your questions about this Chrysler Sebring Your message will always be answered by a real human — never an automated system.     Disclaimer: Affordable Auto Sales Albuquerque will never sell, share, or spam your mobile number. Standard text messaging rates may apply. All vehicles are subject to prior sale. We reserve the right to make changes without notice and are not responsible for error or omissions. All prices exclude government fees and taxes, any finance charges and any emissions test charge. It is responsibility of the buyer to call and verify all information in this ad.\r \r ALL PRICES POSTED ARE CASH PRICES ,,, FINANCING IS AVAILABLE,,, ADDITIONAL FEES MAY APPLY\r \r \r In house financing is only available on select vehicles. See dealer for details      2006 Chrysler Sebring GTC Convertible  6828bfd01ab24e88a067a9c2d09416c6      1
                Very solid 2001 Ford expedition Eddie bower ed.  Great tranny and powerhouse. Sun roof has issues. Duck tape works at pleez. Daily driver but need cash badly. Walk or downgrade . Gotta have 650. No bickering. 650 or keep. No title but not stolen. Have reg. Tag., insur. In name now. Title issues get troublesome.  With title it's worth 2500 easy cash.  show contact info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1
                2009 Buick LaCrosse CXL  133k miles Leather Heated seats Dual power seats  Still inspected through 2021 and will have zero issues passing again No engine light or issues Runs and drives smooth and quiet  AC is ice cold  Heat blows hot for the unfortunate upcoming winter Tires are good Brakes are good No pulsating in the pedal or noises No suspension clunks or noises This car runs and drives 100% Bring $3700 and drive it away                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1
                2014 Subaru XV Crosstrek Premium  Huebner Chevrolet Subaru330-915-31751155 Canton RD NWCarrollton, OH 44615  Price: $15,000Mileage: 73,515Stock #: 64628A  Type: UsedTrim: PremiumBodystyle: HatchbackTransmission: Continuously VariableDrive: AWDEngine: 2.0L 4-cylFuel Type: Regular GasolineExterior Color: Crystal Black SilicaInterior Color: IvorySeats: 5  --- LOW MILES!! --- AWD --- NAVIGATION!! --- BACKUP CAMERA --- BLUETOOTH --- CVT - 33 MPG!!! --- 17 ALLOY WHEELS --- FULL POWER ACCESSORIES --- STEERING WHEEL CONTROLS --- HEATED SEATS --- REAR SPOILER --- FOG LIGHTS --- ROOF RAILS --- UNIVERSAL HOME REMOTE ---We've just taken in an ADVENTUROUS, XV Crosstrek 2.0i Premium with just 73,542 miles. The beautiful, Crystal Black Silica exterior and the Ivory cloth interior are both in very nice shape.This 2.0i XV Crosstrek Premium comes with the 2.0L engine, paired with the Lineartronic CVT transmission, and AWD. When equipped with the CVT, the transmission shifts seamlessly through fixed ratios for optimum engine control, getting you improved fuel economy rates of 33 MPG! Plus, Subaru is a leader in All-Wheel-Drive technology so the Crosstrek boasts one of the best systems in it's class!You get some really great features on the XV Crosstrek, like heated seats, premium 17 charcoal and silver alloy wheels, fog lights, roof rails, heated side mirrors, power accessories, cruise control and Bluetooth connectivity for your phone and audio streaming. For sound, you gain a 6-Speaker Audio System that features a CD player, USB port and an iPod/MP3 audio input.If you want fun and versatility all rolled into one small package, then this sharp looking, adventurous 2014 XV Crosstrek Premium is just what you've been looking for!! Here at HUEBNER CHEVROLET SUBARU we make sure to put every used vehicle through an extensive 100 Point Safety Inspection so you can buy and drive with peace of mind. Come in for a no pressure test drive today!  http://www.autofusion.com/AF2/vdp/47098108.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1
                2007 Nissan Maxima Very Strong Engine Still Running and Driving, Heated Seats, Touchscreen Radio, Bluetooth, Sunroof, Backup Camera, Blind Spot Camera, Leather Seats, Power Seats, Reclining Seats in the Back, Ice Cold Ac, Push to Start, Remote Key, Keyless Entry, Mini Fridge/cooler, Power Windows, Runs Fine No Issues Ac Blows Cold, Leather Seats Moonroof Tinted Windows Bluetooth & Aux Cord, Excellent Condition Second Owner, Original Low Miles, New Tires, All Power, 6 Cd Player, Sirius Radio, a/c and Heater Works Excellent and It's a Very Clean Truck Inside and Outside.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1
                Name: description, Length: 275765, dtype: int64
                Series([], Name: county, dtype: int64)
                ca    45798
                fl    27413
                tx    23411
                ny    18186
                or    17312
                oh    16920
                mi    15995
                nc    15179
                wa    14260
                wi    12744
                pa    12376
                co    11996
                tn    10722
                va    10580
                nj    10159
                il    10143
                id     9482
                ia     9005
                mn     8965
                az     8353
                mt     7580
                ma     7548
                ok     6481
                sc     6470
                in     6028
                ga     6012
                ks     5875
                al     5232
                ct     5082
                mo     4915
                ky     4662
                md     4468
                ar     4320
                nm     4151
                ak     3973
                nv     3081
                hi     2969
                nh     2958
                me     2941
                dc     2936
                la     2935
                vt     2588
                ri     2530
                ne     2087
                sd     1756
                ms     1399
                ut     1039
                wy      844
                de      839
                wv      693
                nd      466
                Name: state, dtype: int64
                33.7792    4259
                43.1824    2769
                46.2348    2026
                40.2043    1665
                40.4688    1558
                           ... 
                41.8691       1
                29.6278       1
                32.6157       1
                58.3605       1
                44.0055       1
                Name: lat, Length: 41175, dtype: int64
                -84.4118     4259
                -84.1122     2767
                -119.1280    2071
                -74.1779     1665
                -74.2817     1558
                             ... 
                -77.4883        1
                -94.7044        1
                -84.3864        1
                -72.5057        1
                -88.2199        1
                Name: long, Length: 41492, dtype: int64
                

Obs: Based on above observation the features which are too common or of no use like url can be dropped¶

In [7]:
df= df.drop(columns=['id','url', 'region_url', 'vin', 'image_url', 'description', 'lat', 'long','county','region'], axis=1)
                
In [8]:
df.head()
                
Out[8]:
price year manufacturer model condition cylinders fuel odometer title_status transmission drive size type paint_color state
0 6995 2000.0 gmc new sierra 1500 excellent 8 cylinders gas 167783.0 clean automatic 4wd NaN NaN red mn
1 8750 2013.0 hyundai sonata excellent 4 cylinders gas 90821.0 clean automatic fwd NaN NaN grey mn
2 10900 2013.0 toyota prius good 4 cylinders hybrid 92800.0 clean automatic fwd NaN NaN blue ct
3 12500 2003.0 mitsubishi lancer good 4 cylinders gas NaN clean manual 4wd mid-size sedan grey nm
4 16995 2007.0 gmc sierra classic 2500hd good 8 cylinders diesel 254217.0 clean automatic 4wd full-size truck white mn
In [9]:
df.describe()
                
Out[9]:
price year odometer
count 4.238570e+05 328743.000000 2.705850e+05
mean 5.779437e+04 2009.827358 9.942578e+04
std 1.002581e+07 10.135809 1.204833e+05
min 0.000000e+00 1900.000000 0.000000e+00
25% 4.499000e+03 2007.000000 4.432400e+04
50% 9.995000e+03 2012.000000 9.174900e+04
75% 1.899500e+04 2016.000000 1.372370e+05
max 3.808256e+09 2021.000000 1.000000e+07

Handling outliers¶

Lets see if any outliers in Target variable as we remove them the model can be more accurate because they cause a bring a lot of difference in values of mean and SD.

the difference between 75% value and max value is too large so lets leave 10% values at both ends of a distribution

In [10]:
rr=sorted(df["price"])
                
In [11]:
quantile1, quantile3= np.percentile(rr,[10,90])
                
In [12]:
print(quantile1,quantile3)
                
389.6000000000058 31500.0
                

We are removing the 10% values from both end to remove the outliers¶

In [13]:
df=df[(df.price < 27500) & (df.price >= 500 )]
                df.shape
                
Out[13]:
(322693, 15)

Lets observe the odometer column¶

In [14]:
r=sorted(df["odometer"])
                r
                
Out[14]:
[137.0,
                 45431.0,
                 48932.0,
                 49858.0,
                 64515.0,
                 76202.0,
                 77200.0,
                 79160.0,
                 81900.0,
                 86942.0,
                 88000.0,
                 89156.0,
                 89875.0,
                 90000.0,
                 90112.0,
                 90821.0,
                 91840.0,
                 92800.0,
                 94800.0,
                 102000.0,
                 102462.0,
                 102825.0,
                 103000.0,
                 115000.0,
                 116711.0,
                 124995.0,
                 125000.0,
                 126207.0,
                 128000.0,
                 135000.0,
                 138588.0,
                 142835.0,
                 143528.0,
                 148334.0,
                 150959.0,
                 167783.0,
                 nan,
                 108124.0,
                 145955.0,
                 152415.0,
                 159000.0,
                 160600.0,
                 170259.0,
                 170684.0,
                 176386.0,
                 178054.0,
                 178108.0,
                 181986.0,
                 184817.0,
                 188406.0,
                 196913.0,
                 200000.0,
                 208016.0,
                 210865.0,
                 223470.0,
                 254217.0,
                 271000.0,
                 309621.0,
                 nan,
                 nan,
                 nan,
                 299000.0,
                 nan,
                 nan,
                 8000.0,
                 36000.0,
                 53300.0,
                 62000.0,
                 65000.0,
                 68559.0,
                 73000.0,
                 82000.0,
                 91806.0,
                 94448.0,
                 100460.0,
                 110000.0,
                 113000.0,
                 130000.0,
                 143700.0,
                 156559.0,
                 167828.0,
                 186200.0,
                 229937.0,
                 nan,
                 85000.0,
                 176000.0,
                 204496.0,
                 230500.0,
                 242613.0,
                 262000.0,
                 nan,
                 nan,
                 208453.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 196000.0,
                 260607.0,
                 nan,
                 500.0,
                 15414.0,
                 38000.0,
                 50000.0,
                 56289.0,
                 58764.0,
                 63000.0,
                 64596.0,
                 76164.0,
                 85122.0,
                 85556.0,
                 87000.0,
                 87742.0,
                 92000.0,
                 104897.0,
                 104898.0,
                 105000.0,
                 105880.0,
                 108869.0,
                 115000.0,
                 116751.0,
                 119592.0,
                 123000.0,
                 125147.0,
                 148212.0,
                 152000.0,
                 153000.0,
                 158000.0,
                 160025.0,
                 165000.0,
                 192420.0,
                 nan,
                 179804.0,
                 nan,
                 216800.0,
                 nan,
                 165000.0,
                 193000.0,
                 nan,
                 nan,
                 nan,
                 35224.0,
                 40629.0,
                 50273.0,
                 82740.0,
                 103000.0,
                 105000.0,
                 113400.0,
                 124000.0,
                 140000.0,
                 141118.0,
                 152000.0,
                 195413.0,
                 nan,
                 nan,
                 nan,
                 111563.0,
                 144000.0,
                 147893.0,
                 155000.0,
                 158000.0,
                 192000.0,
                 251000.0,
                 nan,
                 144263.0,
                 172000.0,
                 187000.0,
                 195756.0,
                 210000.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 168000.0,
                 181000.0,
                 223000.0,
                 250000.0,
                 nan,
                 238000.0,
                 319000.0,
                 nan,
                 1699.0,
                 27000.0,
                 32428.0,
                 53646.0,
                 66782.0,
                 74408.0,
                 78507.0,
                 86643.0,
                 93559.0,
                 104033.0,
                 109527.0,
                 119598.0,
                 131164.0,
                 142055.0,
                 170623.0,
                 nan,
                 142763.0,
                 nan,
                 nan,
                 22289.0,
                 28269.0,
                 50776.0,
                 73766.0,
                 74273.0,
                 79091.0,
                 80242.0,
                 90822.0,
                 102783.0,
                 110346.0,
                 130348.0,
                 134177.0,
                 176580.0,
                 nan,
                 6988.0,
                 13479.0,
                 32276.0,
                 40234.0,
                 40533.0,
                 43400.0,
                 48900.0,
                 51636.0,
                 55268.0,
                 58112.0,
                 71416.0,
                 77000.0,
                 79198.0,
                 80566.0,
                 84411.0,
                 93060.0,
                 96000.0,
                 97540.0,
                 99898.0,
                 103369.0,
                 110000.0,
                 112103.0,
                 112447.0,
                 116022.0,
                 120000.0,
                 120940.0,
                 127411.0,
                 145996.0,
                 146660.0,
                 150778.0,
                 152000.0,
                 161201.0,
                 178318.0,
                 179000.0,
                 185423.0,
                 187867.0,
                 196611.0,
                 198117.0,
                 198334.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 19734.0,
                 21449.0,
                 35677.0,
                 37885.0,
                 43961.0,
                 66850.0,
                 72530.0,
                 75771.0,
                 77945.0,
                 79639.0,
                 100761.0,
                 105000.0,
                 110400.0,
                 132000.0,
                 133000.0,
                 134041.0,
                 138000.0,
                 149273.0,
                 151000.0,
                 154025.0,
                 159147.0,
                 160000.0,
                 178000.0,
                 179856.0,
                 nan,
                 nan,
                 nan,
                 161776.0,
                 164030.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 220000.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 13848.0,
                 21800.0,
                 46145.0,
                 47055.0,
                 54062.0,
                 65748.0,
                 90261.0,
                 91001.0,
                 93988.0,
                 95000.0,
                 97426.0,
                 100694.0,
                 102000.0,
                 103240.0,
                 103600.0,
                 105311.0,
                 109210.0,
                 110380.0,
                 113000.0,
                 113000.0,
                 122269.0,
                 126000.0,
                 134000.0,
                 nan,
                 nan,
                 118587.0,
                 141690.0,
                 145155.0,
                 190000.0,
                 200000.0,
                 200245.0,
                 215000.0,
                 nan,
                 nan,
                 nan,
                 121365.0,
                 168000.0,
                 174599.0,
                 179942.0,
                 290000.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 299.0,
                 17767.0,
                 23595.0,
                 24335.0,
                 26704.0,
                 30628.0,
                 35322.0,
                 35500.0,
                 35650.0,
                 45024.0,
                 67500.0,
                 68000.0,
                 68670.0,
                 69618.0,
                 75346.0,
                 80275.0,
                 84550.0,
                 85000.0,
                 94877.0,
                 95500.0,
                 99000.0,
                 102270.0,
                 102830.0,
                 106000.0,
                 110000.0,
                 111090.0,
                 112000.0,
                 114000.0,
                 116435.0,
                 121352.0,
                 128929.0,
                 131000.0,
                 136000.0,
                 140000.0,
                 143000.0,
                 155000.0,
                 156000.0,
                 157000.0,
                 158000.0,
                 159000.0,
                 161626.0,
                 253000.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 140000.0,
                 183000.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 131000.0,
                 134523.0,
                 170000.0,
                 174000.0,
                 nan,
                 22432.0,
                 26000.0,
                 27000.0,
                 28777.0,
                 35623.0,
                 36442.0,
                 38475.0,
                 40574.0,
                 43708.0,
                 44026.0,
                 45000.0,
                 49615.0,
                 69000.0,
                 78000.0,
                 82000.0,
                 84000.0,
                 94025.0,
                 95000.0,
                 105131.0,
                 106182.0,
                 106182.0,
                 107500.0,
                 113000.0,
                 120000.0,
                 125000.0,
                 138000.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 139900.0,
                 147000.0,
                 165000.0,
                 nan,
                 nan,
                 38579.0,
                 96857.0,
                 nan,
                 8805.0,
                 21000.0,
                 38475.0,
                 46000.0,
                 69761.0,
                 78869.0,
                 80945.0,
                 80945.0,
                 92993.0,
                 96000.0,
                 96857.0,
                 101758.0,
                 115000.0,
                 120000.0,
                 123212.0,
                 127146.0,
                 128518.0,
                 128647.0,
                 130000.0,
                 133000.0,
                 133183.0,
                 134000.0,
                 135362.0,
                 141000.0,
                 144000.0,
                 149000.0,
                 156201.0,
                 156940.0,
                 164715.0,
                 170000.0,
                 182000.0,
                 182000.0,
                 192399.0,
                 197000.0,
                 nan,
                 nan,
                 nan,
                 15776.0,
                 16000.0,
                 22501.0,
                 60952.0,
                 73079.0,
                 79307.0,
                 82000.0,
                 97000.0,
                 100755.0,
                 105000.0,
                 114000.0,
                 116998.0,
                 123000.0,
                 125770.0,
                 127000.0,
                 128000.0,
                 128000.0,
                 129000.0,
                 130469.0,
                 133000.0,
                 135000.0,
                 135323.0,
                 138095.0,
                 143376.0,
                 145000.0,
                 149260.0,
                 160016.0,
                 162000.0,
                 170000.0,
                 172170.0,
                 177000.0,
                 189000.0,
                 189723.0,
                 190610.0,
                 203000.0,
                 nan,
                 nan,
                 197000.0,
                 1655000.0,
                 nan,
                 nan,
                 200500.0,
                 246000.0,
                 nan,
                 164000.0,
                 172000.0,
                 nan,
                 nan,
                 nan,
                 162000.0,
                 234000.0,
                 nan,
                 nan,
                 nan,
                 228000.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 99800.0,
                 129000.0,
                 157000.0,
                 160000.0,
                 nan,
                 15822.0,
                 18680.0,
                 31322.0,
                 38109.0,
                 38287.0,
                 42303.0,
                 42703.0,
                 42819.0,
                 52247.0,
                 56634.0,
                 62922.0,
                 64262.0,
                 67132.0,
                 68559.0,
                 76301.0,
                 76867.0,
                 78000.0,
                 83000.0,
                 86865.0,
                 87875.0,
                 91806.0,
                 92483.0,
                 95195.0,
                 98000.0,
                 109000.0,
                 115048.0,
                 118369.0,
                 123000.0,
                 124000.0,
                 130055.0,
                 142618.0,
                 149553.0,
                 150000.0,
                 158500.0,
                 164000.0,
                 169700.0,
                 186000.0,
                 nan,
                 17831.0,
                 24000.0,
                 37403.0,
                 44000.0,
                 51900.0,
                 54040.0,
                 56289.0,
                 56544.0,
                 57900.0,
                 64669.0,
                 74875.0,
                 75100.0,
                 78099.0,
                 79900.0,
                 96000.0,
                 102903.0,
                 105567.0,
                 122000.0,
                 124000.0,
                 131500.0,
                 135000.0,
                 145500.0,
                 147318.0,
                 148500.0,
                 153741.0,
                 167882.0,
                 170000.0,
                 172817.0,
                 174000.0,
                 186709.0,
                 188250.0,
                 192223.0,
                 198895.0,
                 198900.0,
                 206000.0,
                 220000.0,
                 237600.0,
                 238000.0,
                 277000.0,
                 nan,
                 nan,
                 nan,
                 76373.0,
                 139836.0,
                 nan,
                 nan,
                 nan,
                 12783.0,
                 22909.0,
                 24586.0,
                 38437.0,
                 55802.0,
                 58098.0,
                 58613.0,
                 58893.0,
                 64809.0,
                 72095.0,
                 92367.0,
                 101270.0,
                 128000.0,
                 167160.0,
                 nan,
                 64982.0,
                 76074.0,
                 84085.0,
                 97846.0,
                 109926.0,
                 124000.0,
                 138154.0,
                 140123.0,
                 140290.0,
                 142786.0,
                 159219.0,
                 168000.0,
                 169072.0,
                 176617.0,
                 194000.0,
                 200000.0,
                 nan,
                 nan,
                 nan,
                 4556.0,
                 8473.0,
                 10824.0,
                 25277.0,
                 25739.0,
                 31908.0,
                 38018.0,
                 50000.0,
                 50670.0,
                 58828.0,
                 74662.0,
                 87000.0,
                 91601.0,
                 94000.0,
                 99762.0,
                 101827.0,
                 101856.0,
                 103000.0,
                 120000.0,
                 144000.0,
                 153342.0,
                 195230.0,
                 nan,
                 175325.0,
                 nan,
                 108260.0,
                 110000.0,
                 130000.0,
                 180000.0,
                 191206.0,
                 206000.0,
                 1000000.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 4356.0,
                 10213.0,
                 13147.0,
                 18416.0,
                 25277.0,
                 26237.0,
                 29711.0,
                 37990.0,
                 48789.0,
                 49539.0,
                 60137.0,
                 70200.0,
                 70206.0,
                 73409.0,
                 73988.0,
                 75680.0,
                 84483.0,
                 86568.0,
                 89329.0,
                 96200.0,
                 100455.0,
                 105593.0,
                 110365.0,
                 114299.0,
                 117000.0,
                 120298.0,
                 121005.0,
                 138365.0,
                 154000.0,
                 155000.0,
                 156008.0,
                 159000.0,
                 163000.0,
                 177000.0,
                 188000.0,
                 192000.0,
                 197000.0,
                 224000.0,
                 248000.0,
                 nan,
                 nan,
                 237000.0,
                 nan,
                 270330.0,
                 nan,
                 32752.0,
                 41000.0,
                 69110.0,
                 71455.0,
                 72869.0,
                 74057.0,
                 nan,
                 49880.0,
                 77139.0,
                 83100.0,
                 88652.0,
                 90095.0,
                 94280.0,
                 128322.0,
                 129094.0,
                 161000.0,
                 nan,
                 87828.0,
                 160000.0,
                 167384.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 10700.0,
                 34600.0,
                 131000.0,
                 144000.0,
                 182000.0,
                 nan,
                 221000.0,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 nan,
                 0.0,
                 14190.0,
                 15000.0,
                 21007.0,
                 31286.0,
                 36824.0,
                 36990.0,
                 37932.0,
                 51728.0,
                 54269.0,
                 57308.0,
                 59097.0,
                 64507.0,
                 67336.0,
                 69245.0,
                 71032.0,
                 73012.0,
                 75036.0,
                 78470.0,
                 80559.0,
                 92481.0,
                 99220.0,
                 115000.0,
                 125000.0,
                 136000.0,
                 139000.0,
                 142718.0,
                 145000.0,
                 147000.0,
                 178174.0,
                 184285.0,
                 500000.0,
                 nan,
                 nan,
                 177558.0,
                 178045.0,
                 180000.0,
                 233840.0,
                 nan,
                 nan,
                 nan,
                 15822.0,
                 18120.0,
                 18309.0,
                 20270.0,
                 25577.0,
                 26139.0,
                 27057.0,
                 27637.0,
                 32639.0,
                 32752.0,
                 33924.0,
                 34933.0,
                 38287.0,
                 39524.0,
                 40142.0,
                 42703.0,
                 58098.0,
                 66199.0,
                 82000.0,
                 131456.0,
                 nan,
                 nan,
                 nan,
                 44000.0,
                 82854.0,
                 87791.0,
                 119000.0,
                 120432.0,
                 125103.0,
                 nan,
                 nan,
                 130066.0,
                 133280.0,
                 143000.0,
                 145331.0,
                 178000.0,
                 217000.0,
                 228000.0,
                 nan,
                 42739.0,
                 56593.0,
                 110004.0,
                 nan,
                 nan,
                 nan,
                 28598.0,
                 29147.0,
                 29266.0,
                 32336.0,
                 41546.0,
                 49683.0,
                 50067.0,
                 52926.0,
                 52985.0,
                 58428.0,
                 63599.0,
                 70579.0,
                 72664.0,
                 98000.0,
                 99129.0,
                 100648.0,
                 102917.0,
                 109000.0,
                 119000.0,
                 128000.0,
                 134000.0,
                 148865.0,
                 152000.0,
                 158000.0,
                 165000.0,
                 179296.0,
                 nan,
                 150795.0,
                 182000.0,
                 183015.0,
                 192420.0,
                 nan,
                 172800.0,
                 nan,
                 nan,
                 23315.0,
                 26354.0,
                 29609.0,
                 32841.0,
                 34341.0,
                 34449.0,
                 44000.0,
                 49189.0,
                 53615.0,
                 54297.0,
                 55000.0,
                 56136.0,
                 60421.0,
                 69000.0,
                 89000.0,
                 94673.0,
                 97604.0,
                 102000.0,
                 109391.0,
                 109422.0,
                 116000.0,
                 126000.0,
                 133465.0,
                 135723.0,
                 140000.0,
                 141731.0,
                 142951.0,
                 145750.0,
                 158335.0,
                 159000.0,
                 182000.0,
                 199412.0,
                 205000.0,
                 nan,
                 249750.0,
                 nan,
                 163000.0,
                 177364.0,
                 nan,
                 1.0,
                 7700.0,
                 11675.0,
                 19775.0,
                 22332.0,
                 28418.0,
                 32061.0,
                 40000.0,
                 46400.0,
                 59902.0,
                 64000.0,
                 65000.0,
                 66098.0,
                 69000.0,
                 82814.0,
                 83586.0,
                 101635.0,
                 116154.0,
                 134117.0,
                 139415.0,
                 141773.0,
                 143157.0,
                 143267.0,
                 144370.0,
                 152946.0,
                 153796.0,
                 156741.0,
                 162919.0,
                 179200.0,
                 179854.0,
                 185326.0,
                 189600.0,
                 222000.0,
                 224139.0,
                 234000.0,
                 nan,
                 247181.0,
                 nan,
                 nan,
                 124.0,
                 126.0,
                 131.0,
                 138.0,
                 146.0,
                 4472.0,
                 8025.0,
                 8697.0,
                 18137.0,
                 29490.0,
                 38000.0,
                 60678.0,
                 61007.0,
                 64541.0,
                 70000.0,
                 74000.0,
                 77022.0,
                 90406.0,
                 124479.0,
                 ...]

There are NaN (missing) values and only one 0 value¶

In [15]:
df["odometer"].isna().sum()
                
Out[15]:
117593

Create a scatter plot to show the distribution of the values. [This is the visualization part of exploratory data analysis]¶

In [16]:
ax = sns.scatterplot(x="odometer", y="price", data=df)
                
In [17]:
df["odometer"].max()
                
Out[17]:
10000000.0
In [18]:
df.drop(df[df["odometer"]==64809218.0].index,inplace=True)
                
In [19]:
df.drop(df[df["odometer"]==0.0].index,inplace=True)
                
In [20]:
ax = sns.scatterplot(x="odometer", y="price", data=df)
                ax.get_xaxis().get_major_formatter().set_scientific(False)
                ax.get_yaxis().get_major_formatter().set_scientific(False)
                
In [23]:
df["odometer"].isna().sum()
                
Out[23]:
0

here the values above 3000000 can be considered as outliers¶

In [24]:
df=df[(df.odometer < 3000000)]
                
In [25]:
ax = sns.scatterplot(x="odometer", y="price", data=df)
                ax.get_xaxis().get_major_formatter().set_scientific(False)
                

Now lets see year column

In [26]:
df["odometer"].isna().sum()
                
Out[26]:
0
In [27]:
df["year"].isna().sum()
                
Out[27]:
471

the null values in a year column cannot be replaced so lets eliminate them

In [28]:
df["year"].min()
                
Out[28]:
1919.0

we must alo drop this 0 values

In [29]:
df.drop(df[df["year"]==0.0].index,inplace=True)
                
In [30]:
df=df.dropna(subset=['year'])
                
In [31]:
bx = sns.scatterplot(x="year", y="price", data=df)
                
In [32]:
df=df[(df.year > 1940)]
                

we have removed outliers from all three numerical columns . now lets how we can remove with nan values if any.

Handling Null Values¶

I am taking out % of null values in each column

In [33]:
null_values=df.isnull().sum()
                null_values=pd.DataFrame(null_values,columns=['null'])
                j=1
                sum_tot=len(df)
                null_values['percent']=null_values['null']/sum_tot
                round(null_values*100,3).sort_values('percent',ascending=False)
                
Out[33]:
null percent
size 12960400 63.617
condition 7777500 38.177
cylinders 6546200 32.133
paint_color 4872100 23.915
drive 4708300 23.111
type 3891800 19.103
manufacturer 623500 3.061
model 157000 0.771
fuel 144800 0.711
title_status 112100 0.550
transmission 82700 0.406
price 0 0.000
year 0 0.000
odometer 0 0.000
state 0 0.000
In [34]:
df.condition.value_counts()
                
Out[34]:
excellent    60679
                good         48590
                like new     11258
                fair          4796
                new            321
                salvage        305
                Name: condition, dtype: int64

the misssing values in the condition can be found using odometer as mileage affects condition of car.¶

what we are trying to do here is finding mean value of odometer readings grouping by there conditions¶

In [35]:
excellent_odo_mean = df[df['condition'] == 'excellent']['odometer'].mean()
                good_odo_mean = df[df['condition'] == 'good']['odometer'].mean()
                like_new_odo_mean = df[df['condition'] == 'like new']['odometer'].mean()
                salvage_odo_mean = df[df['condition'] == 'salvage']['odometer'].mean()
                fair_odo_mean = df[df['condition'] == 'fair']['odometer'].mean()
                
In [36]:
print('Like new average odometer:', round( like_new_odo_mean,2))
                print('Excellent average odometer:', round( excellent_odo_mean,2))
                print('Good average odometer:', round( good_odo_mean,2))
                print('Fair average odometer:', round( fair_odo_mean,2))
                print('Salvage average odometer:', round( salvage_odo_mean,2))
                
Like new average odometer: 85098.04
                Excellent average odometer: 112103.1
                Good average odometer: 121570.61
                Fair average odometer: 182986.37
                Salvage average odometer: 168911.82
                

these are mean values regarding each condition.¶

now these can be used to group the odometer readings which have nan values in condition.¶

In [37]:
df.loc[df.year>=2019, 'condition'] = df.loc[df.year>=2019, 'condition'].fillna('new')
                

the values are being filled by the values from above calculated mean value ranges¶

In [38]:
df.loc[df['odometer'] <= like_new_odo_mean, 'condition'] = df.loc[df['odometer'] <= like_new_odo_mean, 'condition'].fillna('like new')
                
                df.loc[df['odometer'] >= fair_odo_mean, 'condition'] = df.loc[df['odometer'] >= fair_odo_mean, 'condition'].fillna('fair')
                
                df.loc[((df['odometer'] > good_odo_mean) & 
                       (df['odometer'] <= excellent_odo_mean)), 'condition'] = df.loc[((df['odometer'] > good_odo_mean) & 
                       (df['odometer'] <= excellent_odo_mean)), 'condition'].fillna('excellent')
                
                df.loc[((df['odometer'] > like_new_odo_mean) & 
                       (df['odometer'] <= good_odo_mean)), 'condition'] = df.loc[((df['odometer'] > like_new_odo_mean) & 
                       (df['odometer'] <= good_odo_mean)), 'condition'].fillna('good')
                
                df.loc[((df['odometer'] > good_odo_mean) & 
                       (df['odometer'] <= fair_odo_mean)), 'condition'] = df.loc[((df['odometer'] > good_odo_mean) & 
                       (df['odometer'] <= fair_odo_mean)), 'condition'].fillna('salvage')
                
In [39]:
null_values=df.isnull().sum()
                null_values=pd.DataFrame(null_values,columns=['null'])
                j=1
                sum_tot=len(df)
                null_values['percent']=null_values['null']/sum_tot
                round(null_values*100,3).sort_values('percent',ascending=False)
                
Out[39]:
null percent
size 12960400 63.617
cylinders 6546200 32.133
paint_color 4872100 23.915
drive 4708300 23.111
type 3891800 19.103
manufacturer 623500 3.061
model 157000 0.771
fuel 144800 0.711
title_status 112100 0.550
transmission 82700 0.406
price 0 0.000
year 0 0.000
condition 0 0.000
odometer 0 0.000
state 0 0.000

we are droping the null values with less then 5% nan.¶

In [40]:
df=df.dropna(subset=['title_status','fuel','transmission','model','manufacturer'])
                

we are also droping the columns with more then 30% null values.¶

but cylinders can be important feature .¶

In [41]:
df=df.drop(["size"],axis=1)
                
In [42]:
null_values=df.isnull().sum()
                null_values=pd.DataFrame(null_values,columns=['null'])
                j=1
                sum_tot=len(df)
                null_values['percent']=null_values['null']/sum_tot
                round(null_values*100,3).sort_values('percent',ascending=False)
                
Out[42]:
null percent
cylinders 6176000 31.960
paint_color 4617300 23.894
drive 4431900 22.934
type 3672300 19.004
price 0 0.000
year 0 0.000
manufacturer 0 0.000
model 0 0.000
condition 0 0.000
fuel 0 0.000
odometer 0 0.000
title_status 0 0.000
transmission 0 0.000
state 0 0.000

now we are replacing the missing values with forward fill¶

In [46]:
df['paint_color'] = df['paint_color'].fillna(method='ffill')
                df['drive'] = df['drive'].fillna(method='ffill')
                
In [47]:
df['type'] = df['type'].fillna(method='ffill')
                df['cylinders'] = df['cylinders'].fillna(method='ffill')
                
In [48]:
df.isnull().sum()
                
Out[48]:
price           0
                year            0
                manufacturer    0
                model           0
                condition       0
                cylinders       0
                fuel            0
                odometer        0
                title_status    0
                transmission    0
                drive           0
                type            3
                paint_color     0
                state           0
                dtype: int64
In [49]:
df=df.dropna(subset=['cylinders','drive'])
                
In [50]:
df.isnull().sum()
                
Out[50]:
price           0
                year            0
                manufacturer    0
                model           0
                condition       0
                cylinders       0
                fuel            0
                odometer        0
                title_status    0
                transmission    0
                drive           0
                type            3
                paint_color     0
                state           0
                dtype: int64

Exploratory Data Analysis visualization¶

In [51]:
from scipy import stats
                
In [52]:
sns.pairplot(df)
                
Out[52]:
<seaborn.axisgrid.PairGrid at 0xc734d400>

The above were relation between numerical values of the table.¶

In [54]:
df.info()
                
<class 'pandas.core.frame.DataFrame'>
                Int64Index: 193243 entries, 0 to 423856
                Data columns (total 14 columns):
                 #   Column        Non-Null Count   Dtype  
                ---  ------        --------------   -----  
                 0   price         193243 non-null  int64  
                 1   year          193243 non-null  float64
                 2   manufacturer  193243 non-null  object 
                 3   model         193243 non-null  object 
                 4   condition     193243 non-null  object 
                 5   cylinders     193243 non-null  object 
                 6   fuel          193243 non-null  object 
                 7   odometer      193243 non-null  float64
                 8   title_status  193243 non-null  object 
                 9   transmission  193243 non-null  object 
                 10  drive         193243 non-null  object 
                 11  type          193240 non-null  object 
                 12  paint_color   193243 non-null  object 
                 13  state         193243 non-null  object 
                dtypes: float64(2), int64(1), object(11)
                memory usage: 22.1+ MB
                
In [55]:
c=df.columns
                for i in c:
                    print(df[i].value_counts())
                
7995     2595
                8995     2523
                6995     2386
                9995     2372
                5995     2241
                         ... 
                26699       1
                16462       1
                10435       1
                6341        1
                18441       1
                Name: price, Length: 8905, dtype: int64
                2017.0    15378
                2013.0    14735
                2014.0    13842
                2012.0    13140
                2011.0    12678
                          ...  
                1958.0        8
                1954.0        7
                1947.0        3
                1952.0        3
                1942.0        1
                Name: year, Length: 78, dtype: int64
                ford               33184
                chevrolet          26703
                toyota             16707
                honda              13674
                nissan             12246
                jeep                8519
                dodge               7617
                gmc                 6492
                hyundai             6423
                subaru              6093
                volkswagen          5306
                bmw                 5183
                kia                 5113
                ram                 4481
                mercedes-benz       4094
                chrysler            4082
                buick               3251
                mazda               3008
                cadillac            2760
                lexus               2630
                audi                2071
                acura               1995
                lincoln             1734
                infiniti            1487
                pontiac             1474
                volvo               1374
                mitsubishi          1340
                mini                1030
                mercury              938
                saturn               779
                rover                470
                jaguar               415
                fiat                 410
                harley-davidson       68
                alfa-romeo            42
                datsun                33
                tesla                  7
                land rover             7
                porche                 2
                morgan                 1
                Name: manufacturer, dtype: int64
                f-150                       2775
                escape                      2394
                camry                       2043
                silverado 1500              1947
                altima                      1825
                                            ... 
                sportage lx awd suv            1
                benz e 300                     1
                s350                           1
                romeo giulia turbo sport       1
                sedona lx lx w/uvo,            1
                Name: model, Length: 14357, dtype: int64
                good         62848
                excellent    58189
                like new     37501
                salvage      19682
                fair         10574
                new           4449
                Name: condition, dtype: int64
                4 cylinders     77762
                6 cylinders     69569
                8 cylinders     42229
                5 cylinders      1934
                10 cylinders      792
                other             476
                3 cylinders       366
                12 cylinders      115
                Name: cylinders, dtype: int64
                gas         176996
                diesel        7707
                other         5240
                hybrid        2827
                electric       473
                Name: fuel, dtype: int64
                150000.0    647
                140000.0    617
                160000.0    601
                130000.0    597
                170000.0    563
                           ... 
                232100.0      1
                166563.0      1
                83281.0       1
                3764.0        1
                113853.0      1
                Name: odometer, Length: 71104, dtype: int64
                clean         185464
                rebuilt         4332
                salvage         2131
                lien            1130
                missing          138
                parts only        48
                Name: title_status, dtype: int64
                automatic    175068
                manual        12131
                other          6044
                Name: transmission, dtype: int64
                fwd    89763
                4wd    71858
                rwd    31622
                Name: drive, dtype: int64
                sedan          60245
                SUV            53032
                truck          14423
                pickup         13544
                coupe           9359
                other           9192
                hatchback       9128
                wagon           7980
                van             6410
                mini-van        5156
                convertible     4293
                offroad          331
                bus              147
                Name: type, dtype: int64
                white     45381
                black     37263
                silver    31001
                blue      21752
                grey      20148
                red       19419
                custom     5686
                green      5277
                brown      4388
                yellow     1285
                orange     1055
                purple      588
                Name: paint_color, dtype: int64
                ca    16791
                fl    12208
                mi     9402
                oh     9401
                ny     8663
                tx     8296
                wi     7566
                nc     6618
                pa     6521
                or     5775
                va     5765
                nj     5720
                tn     5492
                co     5438
                ia     5064
                wa     4382
                id     4239
                ma     4048
                il     4039
                mn     4020
                mt     3971
                in     3457
                ct     3073
                sc     2858
                ok     2735
                al     2688
                ky     2667
                ks     2646
                md     2496
                ak     2408
                az     2401
                mo     2292
                ga     2206
                ar     1729
                nm     1556
                nh     1502
                nv     1481
                ri     1440
                vt     1365
                me     1340
                dc     1293
                la     1195
                hi      894
                sd      875
                ne      722
                ms      697
                ut      515
                de      424
                wy      326
                nd      275
                wv      268
                Name: state, dtype: int64
                
In [56]:
ax = sns.barplot(x="condition", y="price", data=df)
                

Clearly vehicles with condition new has highest price as one expects.

In [57]:
sns.catplot(y="cylinders", x="price",kind = "violin", data=df)
                
Out[57]:
<seaborn.axisgrid.FacetGrid at 0xc734de48>

This violinplot provides clear idea about the distribution of number of cylinders and the price.¶

In [58]:
sns.catplot(x="fuel", y="price", kind="boxen",
                            data=df)
                
Out[58]:
<seaborn.axisgrid.FacetGrid at 0xc7ad9dd8>

This figure shows the price range between which majority of each type of car based on fuel lies.¶

Gas=5k-17k¶

diesel=12k-20k¶

hybrid=7k-15k¶

other=11k-20k¶

electric=10k-18k¶

In [59]:
sns.catplot(x="title_status", y="price",kind="violin", data=df)
                
Out[59]:
<seaborn.axisgrid.FacetGrid at 0xc930efd0>

The distribution of price of cars based on title_status can be seen here.¶

In [60]:
sns.catplot(x="transmission", y="price",kind="bar", palette="ch:.25", data=df)
                
Out[60]:
<seaborn.axisgrid.FacetGrid at 0xd0bdc2e8>

The relation between price and transmission.

In [61]:
sns.violinplot(x=df.drive, y=df.price);
                

There doesnt seem too be much difference between the first 2 types of drives .

The third one is a bit different.

In [215]:
sns.catplot(y="type", x="price",kind="boxen", data=df);
                

Important observation can be obtained from the above figure regarding the price bracket for each type of vehicle.¶

In [216]:
sns.catplot(y="paint_color", x="price",kind="violin", data=df);
                

Important observation can be obtained from the above figure regarding the distribution of price bracket for each color of vehicle.¶

In [217]:
sns.catplot(y="manufacturer", x="price",kind="box", data=df);
                

It just gives and idea about prices based on the manufacturer.¶

Label Processing¶

In [62]:
from sklearn import preprocessing
                import pandas as pd
                le = preprocessing.LabelEncoder()
                
In [63]:
df.columns
                
Out[63]:
Index(['price', 'year', 'manufacturer', 'model', 'condition', 'cylinders',
                       'fuel', 'odometer', 'title_status', 'transmission', 'drive', 'type',
                       'paint_color', 'state'],
                      dtype='object')
In [64]:
df[['manufacturer', 'model', 'condition',
                       'cylinders', 'fuel', 'title_status', 'transmission',
                       'drive', 'type', 'paint_color', 'state']]=df[['manufacturer', 'model', 'condition',
                       'cylinders', 'fuel', 'title_status', 'transmission',
                       'drive', 'type', 'paint_color', 'state']].apply(le.fit_transform)
                

Split Train and Test data¶

In [65]:
from sklearn import datasets, linear_model
                from sklearn.model_selection import train_test_split
                from matplotlib import pyplot as plt
                
In [66]:
y= df.price
                X= df.drop('price',axis=1)
                
In [67]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
                
In [68]:
print (X_train.shape, y_train.shape)
                print (X_test.shape, y_test.shape)
                
(154594, 13) (154594,)
                (38649, 13) (38649,)
                

Training Model¶

Random Forest¶

Random forest, which is a bagging algorithm where we train many decision trees in parallel using bootstrap samples of our data and aggregate the output. In addition, we have the option of scoring each tree on the data in the training set that it didn't receive in its bootstrap sample, called out-of-bag samples.¶
Each of the trees also gets a subset of the features (random feature selection), which defaults to the square root of the number of features (the max_features parameter). This can help address the curse of dimensionality. As a consequence, however, the random forest can't be as easily interpreted as the decision trees that make it up. We can, however, extract feature importances from the random forest.The random forest is robust to outliers and able to model non-linear decision boundaries to predict the results. Here we will be using a random forest regressor using sklearn package of python.¶
In [72]:
from sklearn.ensemble import RandomForestRegressor
                
                regressor = RandomForestRegressor(n_estimators=20, random_state=0)
                regressor.fit(X_train, y_train)
                y_pred = regressor.predict(X_test)
                
In [73]:
from sklearn import metrics
                from sklearn.metrics import mean_squared_error as MSE
                
In [77]:
print('Mean Absolute Error:', round(metrics.mean_absolute_error(y_test, y_pred),2))
                print('Mean Squared Error:', round(metrics.mean_squared_error(y_test, y_pred),2))
                print('Root Mean Squared Error:', round(np.sqrt(metrics.mean_squared_error(y_test, y_pred)),2))
                
Mean Absolute Error: 1726.32
                Mean Squared Error: 7435213.35
                Root Mean Squared Error: 2726.76
                

We can calculate the accuracy of the model with the above mentioned methods - Mean Absolute Error, Mean Squared Error, and Root Mean Squared Error.¶

However, the easiest way to interpret the accuracy is through MAPE.¶

In [76]:
d = pd.DataFrame()
                d["test_y"] = y_test
                d["y_pred"] = y_pred
                
                #Mape with formula
                d["mp"] = abs((d["test_y"]- d["y_pred"])/d["test_y"])
                (d.mp.mean())*100#mape
                
Out[76]:
29.507433494326758

MAPE of 29.5% means that the price predicted by the model has been deviated by 29.5% from the actual values. In other words, the accuracy is 100% - 29.5% = 70.5%.¶

This is not a very good accuracy of the model. We may use some other algorithms like a boosting method or deep learning (Artificial Neural Network) and check how much improvements can be made into this model.¶

Analytics Educator is the best institute for Data Science courses, based out of Kolkata. We specialize in providing training on data science even to students coming from non-technical background with zero programming or statistical knowledge. We help the associates to learn data science and get job in this field.¶

We are the only institute in India which provide a 100% money back learning guarantee, irrespective of the student's background.¶

You may check out all our instructor led courses from this link. https://www.analyticseducator.com/Courses-Offers.html¶

If you want to read more such Machine Learning case studies then you may go through the following links -¶

https://www.analyticseducator.com/Blog/Predicting%20Insurance%20Premiums.html¶

https://www.analyticseducator.com/Blog/Human%20Resources%20Retention.html¶

https://www.analyticseducator.com/Blog/Who%20do%20we%20target%20for%20Donations.html¶

https://www.analyticseducator.com/Blog/Bank-Customer-retirement-predictions_Solutions-checkpoint.html¶

In [ ]:
 
                
In [ ]:
 
                

Copyright © 2017 Analytics Educator